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Abstract 
 
Maximization of the attack security of a cipher directly entails maximization of the avalanche effect, bit 
independence and nonlinearity. Conventional synchronous stream ciphers as simple combiner-type 
algorithms exhibit no avalanche at all and popular block ciphers as being heavily promoted by Secret 
Services feature tiny block sizes compared with the size of today’s user data packets and text- or multimedia 
files. With increasing block size the number of bytes to pad increases as well, especially for data that is 
exchanged through the internet with comparably small MTU sizes. 
A new class of Polymorphic Encryption Algorithms breaks the block size confinement of conventional block 
ciphers. It further satisfies the Strict Avalanche Criterion in an unprecedented way for a wide range of block 
sizes while keeping the original plaintext size. This new method enables for encryption of blocks with 
variable sizes like TCP/UDP data packets without the need for padding plaintext blocks. 
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1. Introduction 
 
In cryptography, the two main properties of secure cipher, as identified by C.E. Shannon [1] from an 
information theoretical point of view are “confusion” and “diffusion”. His theory is the basis of modern 
cryptography. 
 
“Confusion” refers to making the relationship between key and ciphertext as complex as possible while 
“diffusion” is a property that leads to best possible distribution of any redundancy in the statistics of the 
plaintext in the statistics of the ciphertext. The better the non-uniformity in the distribution of individual 
neighbouring bit patterns in the plaintext is redistributed into the non-uniformity in the distribution of a much 
larger bit pattern of the ciphertext, the better the transformation. In a cipher with good diffusion, the 
ciphertext should change in a pseudorandom manner, if only one bit in the plaintext is changed. 
 
In synchronous stream ciphers a keystream is combined directly with the plaintext using the exclusive or 
operation (XOR). In contrast to self-synchronizing stream ciphers, the binary additive mode of operation 
yields almost no diffusion. In self-synchronizing stream ciphers are several of the previous n ciphertext digits 
used to bias the keystream, which yields at least a better transformation. 
 
While stream ciphers operate on a small number of individual digits one at a time do block ciphers transform 
a comparably larger number of digits at a time. The primary advantage of transforming a large number of 
bits at a time is when an input is changed slightly by flipping a single bit, the output changes significantly. If 
half the output bits flip, the quality of the block cipher is very good. A.F. Webster, S.E. Tavares [3] define this 
so-called avalanche effect as follows: 
For a given transformation to exhibit the avalanche effect, an average of one half of the output bits should 
change whenever a single input bit is complemented. In order to determine whether a given m x n (m input 
bits and n output bits) function f satisfies this requirement, the 2m plaintext vectors must be divided into 2m-1 
pairs, X and Xi , such that X and Xi differ only in bit i. Then the 2m-1 exclusive-or sums 
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௜ܸ ൌ ݂ሺݔሻ ْ ݂ሺݔ௜ሻ 

 
must be calculated. These exclusive-or sums will be referred to as avalanche vectors, each of which 
contains n bits, or avalanche variables. 
If this procedure is repeated for all i such that 1 < i < m, and one half of the avalanche variables are equal 
to 1 for each i, then the function f has good avalanche effect. 
 
The following example demonstrates the effect graphically. The photo below has been reduced to 64 
grayscale levels to ease the demonstration.  
 

 
Figure 1: Original image    Detail 
 
 
AES with its 16 byte block length used in ECB clearly reveals all areas spanning only 4x4 pixels with a 
similar color. ECB mode will surely not be used by anyone who implements AES or a similar cipher. Counter 
mode or CBC mode solves this deficiency in part. 
 

 
Figure 2: AES encrypted image (16 byte blocks)  Detail 
 
 
Even a plain 1024 bit block cipher in ECB mode performs visibly better than AES in ECB mode. Adjacent 
8x16 pixel wide areas with identical content are encrypted in an identical way which yields the same bit 
pattern. The mapping is much better, but it is still possible o draw conclusions about the plaintext. 
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Figure 3: PMC encrypted image (128 byte blocks)  Detail 
 
 
A block cipher featuring a block size that equals the size of this specific sample photograph undoubtedly 
yields the best result as each and every data bit depends on each other data bit. The cipher used to encrypt 
the entire photo is as well operating in ECB mode. There’s no need to use CBC or any other suboptimal 
cipher mode as the block size is the size the image file.  
 

Figure 4: Encrypted image using a Polymorphic Block Cipher with three unbalanced Luby-Rackoff rounds 
and 1.6Mb block size!  
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When cryptographers claim to have taken the avalanche criterion into account, they usually don’t (want to) 
realize that this is mathematically impossible with block sizes around 128 or 256 bit as the messages that 
are encrypted with those ciphers are typically much longer. Even typical TCP or UDP packet sizes of only 
1Kbyte equal 64 times 16 bytes (128 bits = 16 bytes). The example of an IPv4 packet clearly demonstrates 
that with only 128 bit block length, almost the entire header of all IP packets with identical length is 
encrypted into the same ciphertext. If the data area does not contain any block counter, even more static 
ciphertext will be created. The mapping would be much better if block length of the cipher would at least 
span up to the first few bytes of the payload. IPv6 headers are even more critical. A cipher with fixed block 
length of 512 bit would be required to yield a relatively useful mapping! At this point readers it must be 
pointed out that “popular” ciphers are always those that have been certified by authorities whose 
job mainly consists of gathering intelligence. There is a clear conflict of interests for these 
government organizations. These professionals clearly know about the blatant deficiencies of the 
encryption algorithms that they certify.  
 
bit offset 0–3 4–7 8–15 16–18 19–31 

0 version header 
length 

differentiated services / 
type of service total length of packet 

32 identification flags fragment offset 

64 time to live protocol header checksum 

96 source IP address 

128 destination IP address 

160 data (if there are no options – otherwise options are inserted before data) 
Table 1: IPv4 packet 
 
If block size was variable, even between small block lengths such as 256 or 1024 bit, an opponent would at 
least find it more difficult to break such a variable cipher as he or she would not even know which piece of 
information belongs to the very first block or the second, third or fourth. 
Variability of the cipher per se increases attack security. As an example, an opponent may have the choice 
between AES Rijndael, Twofish, Magenta and RC6. That’s an extra 2 bit key information making life of an 
opponent four times more difficult without costing the user of a variable encryption algorithm more than a 
simple selection operation and a few kilobytes of hard disk space, RAM or ROM. By compiling an encryption 
algorithm, a much larger number of different ciphers become equally probable. I’ve called this fundamental 
approach “Polymorphic Encryption” in 1999. This paper describes a much more powerful extension of this 
concept. 
 
Although in practice difficult to realize, it is without any doubt desirable that block sizes are neither fixed nor 
limited to a small number of digits. One might argue that cipher block chaining (CBC), a popular mode of 
operation for a block cipher where each block of plaintext is exclusive ored with the previous ciphertext 
block before being encrypted, provides the required security because each ciphertext block is dependent on 
all previous plaintext blocks. The very first block is although unfortunately only protected with the 
initialization vector (IV) and has absolutely no relation with the second, third or any of the following blocks. 
 
While variable, as well as giant block sizes are desirable, a number of additional criteria must be met by a 
truly secure cipher: 
 

Design goal Polymorphic Giant Block Size Cipher Conventional Ciphers 
Large and 
variable block size 

Block size is only limited by the resources 
of the target computer(s). Target systems 
should run at 500MHz or higher and more 
than 10Mbyte free RAM should be available. 
The Strict Avalanche Criterion is thus met 
perfectly. 

Not supported at all. Ciphers like AES need 
little more than 1Kbyte of machine code 
and a microcontroller typically used in 
cheap smart cards and washing machines 
(approx. 20.000 transistors) to run. It is 
conceivable that such conventional ciphers 
could have been hardened against all kinds 
of attacks if more complex implement-
tations would have been the target. 

No padding to 
reach block 
granularity shall 
be necessary 

Block size is totally variable and blocks 
keep their length => no padding required, 
which results in no information being 
transmitted in vein. 

DES: 8 byte block granularity, 
AES: 16 byte block granularity 

 Padding required 
A 2048 bit conventional block cipher would 
require padding to 256 byte blocks 
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resulting in dramatic increase in data traffic 
if used for the encryption of TCP or UDP 
data packets. 
 

Partitioning of 
extremely big 
blocks at arbitrary 
position 

Blocks that are too big to handle are 
truncated into sub-blocks with block sizes 
that are determined by the key as well as 
the length of the original block. 

Not supported at all. AES, DES and all 
other well-known block ciphers feature 
fixed block sizes. 

Resistance 
against all known 
attacks 

Due to its variable nature are Polymorphic 
Ciphers not susceptible to typical attacks 
that target specific characteristics and/or 
known weaknesses of fixed ciphers. Brute 
Force is although applicable to any cipher. 

AES can be broken easily by DPA 
(Differential Power Attack) on small 
microprocessors and microcontrollers [10]. 

Resistance to 
future attacks that 
may cut effective 
key size by ½ or 
even 2/3  

Cutting of effective key size by ¾ would 
result in still extremely high complexity of 
O(2256) or higher, which is regarded as 
totally safe for the next trillion years. 

Cutting of effective key size by ½  results in 
an extremely low complexity of 264. The 
cipher would be regarded as being broken. 
[7] 

Extremely long 
key setup time 

> 100ms on a modern microprocessor 
make comparably short keys safe against 
Brute Force attacks conducted on a few 
machines. Extremely long key setup time 
increases energy consumption multiplied 
by the time needed for Brute Force by 
factor 2.000.000. 

<1µs help attackers to try each and every 
password combination. This is highly 
dangerous if short passwords are being 
used to protect data. 

Platform 
independence 

Runs on any 32 or 64 bit microprocessor or 
microcontroller 

Runs on any 8-, 16-, 32- and 64 bit 
microprocessor and microcontroller 

Polymorphism 
and data depen-
dent selection of 
functions 

The cipher is not only completely variable, 
but also is the block size huge and 
unpredictable if truncation is performed. No 
static weakness is exhibited. 

Classic ciphers are static and can thus be 
thoroughly reverse-engineered and 
analyzed. Cryptanalysis of a mechanism 
that does always exactly the same is 
somewhat easier than for a mechanism that 
never executes the same operation twice. 

Use of large 
amounts of re-
sources 

1 Mbit internal state requires at least 
approx. 8 million transistor equivalents to 
run. This alone makes Brute Force Attack 
more difficult and much more expensive 
compared with conventional ciphers. 

Less than 50.000 transistor functions are 
required to build an AES block. Approx. 
1.000.000 AES blocks can run in parallel on 
an 8’’ wafer to try and break a code using 
Brute Force. 

Attacks need to 
be expensive for 
an attacker 

The proposed cipher requires a lot of 
resources and extremely much time for key 
setup, an attacker requires a “time x 
resources product” of approx. 200.000 
times compared with AES Rijndael when 
using keys with a similar length. 

Trying different AES keys requires 50.000 
transistor equivalents and less than 1µs. 
This isn’t really all that much. This is a 
REAL weakness. 

High speed 1500 Mbit/s on an Intel Core i7 950
(3.06GHz) (64 bit C++ code, 1024 byte block 
length) 

1000 Mbit/s on an Intel Core Core i7 950 
(3.06GHz) (64 bit C++ code) 

Proven security Three round Luby Rackoff features proven 
security (the mathematical proof follows 
below); polymorphic encryption is 
increasingly popular among experts but it’s 
probably impossible to prove security of 
the entire cipher. 

Security is not proven. Extensive peer 
review indicates that the cipher could be 
broken in the future: 
For 128-bit Rijndael, the problem of 
recovering the secret key from one single 
plaintext can be written as a system of 8000 
quadratic equations with 1600 binary 
unknowns. [8] 
Recently has a new related-key boomerang 
attack on the full AES-192 and the full AES-
256 been found by . Biryukov and 
Khovratovich [9]. A 256 bit key is reduced 
to a 119bit key when using AES-256. The 
attack is not applicable to 128 bit keys. 

Table 2: Design goals 
  



 6

2. The cipher 
 
The Polymorphic Giant Block Cipher features a provably secure structure with key dependence in all 
variable parts of the structure. The enciphering operation is further dependent on the block size that can 
vary greatly. The cipher has the tendency to take advantage of big blocks whenever this is possible. The 
cipher is a substitution-permutation network operating on a minimum of 128 bit words (16 bytes) and a 
maximum of bits allowed by the target application and target platform, thus giving an almost arbitrary block 
size. Block size can thus easily exceed 1Mbyte on a commercial personal computer! The default setting for 
the maximum block size of the demonstration implementation is 128 kbyte in order not to exceed the cache 
size of the secondary cache of modern 64 bit microprocessors. 
 
All values used in the cipher are represented as bitstreams. The indices of the bits are counted from 0 to 7 in 
one 8-bit word, 0 to 63 in 63-bit words, and so on. 
 
For internal computation, all values are represented in little-endian, where the first word (word 0) is the least 
significant word, and the last word is the most significant, and where bit 0 is the least significant bit of word 
0. Externally, we write each block as a plain 64-bit hex number. The cipher encrypts a 128-bit plaintext P to 
a 128-bit ciphertext C under the control of an internal state derived from the key K. The user key length is in 
principle variable, but should ideally be longer than 512 bit and shorter than 6144 bit. Short keys are 
mapped to full-length keys (depending on the implementation) of 6144 bits. This mapping is designed to 
map every short key to a full-length key, with no two short keys being equivalent. 
 
There are no restrictions on the keyspace. 
 
The proposed encryption is ܧ ൌ ܯܦ ל ଵܨ ל ଶܨ ל -௜ is one Lubyܨ is a decorrelation module and ܯܦ ଷ , whereܨ
Rackoff (Feistel) round with a keyed pseudorandom function as round function.  
 
The cipher itself consists of: 
 

- key setup that is required only once. The process step creates the internal state for all confusion 
sequence generators and SP-networks internal to the cipher. Key setup is intentionally 
computationally costly and thus time-consuming. The demo project can be compiled with a fast key 
setup routine for testing; 

- an initial permutation IP; 
- partitioning of big, as well as small blocks into slices of different size in a keyed operation; 
- Execution of a first Luby-Rackoff round [5] with a long left binary string and a short right binary 

string; 
- Execution of a second Luby-Rackoff round with a short left binary string and a long right binary 

string; 
- Execution of a third Luby-Rackoff round with a long left binary string and a short right binary string; 

 
 
For decryption, all steps except for the initial key setup are executed in reverse order. 
 
While conventional block ciphers with large but fixed block lengths of e.g. 8192 bit suffer from their coarse 
granularity, this is not the case for the proposed cipher. If the task was to encrypt 1100 bytes of UDP traffic 
using an 8192 bit block cipher, the designer of a communication system using this conventional cipher would 
have only one choice: 
As 1100 byte can only be encrypted in 1024 byte chunks ( due to the 8192 bit block length), the data would 
have to be transmitted in two separate data packets with 1024 byte length. The first packet would contain 
the first 1024 bytes, while the second packet would contain the remaining 76 bytes + 948 bytes of totally 
useless padding information. It is not even possible to send all 2048 byte in one data packet simply because 
MTU size for Ethernet is 1500 byte and for PPPoE it is even less or equal 1492 byte! 
The proposed cipher although encrypts the entire 1100 byte in one packet without changing the size of the 
packet. 
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Figure 5: Encryption of a UDP data packet with block ciphers featuring different lengths 
 
 
This example clearly demonstrates one of the most decisive advantages of the proposed class of ciphers – 
block ciphers featuring large block lengths must be designed to avoid block granularity. Encryption of 
remaining data could very well be performed by using a cipher with a smaller block size, but it is definitely 
favourable to encrypt the entire block at once. The figure above further reveals that typical AES-encrypted IP 
data packets are highly fragmented!  
 
 
 
2.1 Key Setup 
 
During the key setup phase is the key expanded for use by all sub-functions that require keying. This applies 
to: 

- Confusion sequence generators for the Initial Permutation IP step, 
- Shared (and constant) Internal State of the round functions, 
- Initial Internal State of the round functions.  

 
Fast Polymorphic PRNG functions can be designed to require an enormous amount of random access 
memory – for the Internal State as well as for the polymorphic sequence. It is desirable that this 
pseudorandom data, which is derived from the key, is computed in a lengthy, irreducible number of 
operations. Another design goal is the irreducible usage of as much RAM as appropriate for the class of 
target computers the final application program running the cipher actually runs on. For PCs, RAM usage of 1 
to 10 Megabytes is very well tolerated by users. Internal State of such size forces an opponent who tries 
different and possibly likely keys to invest in a lot of chip space and in the electric power to operate 8 .. 80 
million transistors. Computing and loading 10 Megabytes of pseudorandom data requires at least 1 million 
clock cycles. This compares with only 52 bytes of Internal State for the AES Rijndael algorithm that is 
computed within less than 1000 machine instructions (less than 500 machine instructions on many 32 bit 
microprocessors). The AES algorithm can be implemented in just a little more than 1Kbyte of machine code 
and approx. 20.000 transistors, if a very basic CPU is used as target. 
 

Encryption using AES 
(16 byte block length) 

Plaintext UDP data packet 
(1100 byte) 

Encryption using a 
block cipher with 1024
byte block length 

Encryption using a block 
cipher with variable block 
length 

69 AES ciphertext blocks (1104 byte) => 4 byte padding 

2 ciphertext blocks (2048 byte) => 948 byte padding 

1 ciphertext block (1100 byte) => no padding and no fragmentation 
into tiny chunks of data 

948 extra and totally useless padding bytes 
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Figure 6: Beautiful Marisa holding a brand new 8’’ silicon wafer with 45nm test structures in her hand 
 
 
If speed is the target, then less than 50.000 transistor functions are required to build an AES block. Approx. 1.000.000 
AES blocks can run in parallel on an 8’’ wafer to try and break a code using Brute Force. DES was broken by applying 
this method in 1998. 
 
 
 
2.2 Initial permutation IP  
 
Initial permutation IP is executed prior to any other operation when encrypting data. For decryption this 
operation is the final step. 
The initial (or final) permutation has the cryptographic functionality to distribute plaintext evenly over the 
entire block of the global SP-network of the cipher. This decorrelation step shall discourage attackers to 
apply differential- or differential-linear cryptanalysis to analyze the following round functions. 
 
In [6], Naor and Reingold propose an encryption ܧ ൌ ଶܯܦ ל ଶܨ ל ଵܨ ל  ௜  is a decorrelationܯܦ ଵ  whereܯܦ
module and ܨ௜  is one Feistel round with a keyed pseudorandom function as round function. The result is a 
secure block cipher that cannot be distinguished from a random permutation using chosen 
plaintext/ciphertext attacks. 
In this paper the proposed encryption is ܧ ൌ ܯܦ ל ଵܨ ל ଶܨ ל  ௜ isܨ is a decorrelation module and ܯܦ ଷ , whereܨ
one Luby-Rackoff (Feistel) round with a keyed pseudorandom function as round function. The advantage of 
three-round Luby-Rackoff [5] is that security is proven. As the idea behind Luby-Rackoff (Feistel) is stressed 
for the proposed design (left and right bit strings differ in length – unbalanced Feistel network), usefulness of 
a decorrelation module is indicated. 
 
Execution time of the simple operation below is O(n) because a precomputed table is used in order to speed 
up execution: 
 
ሾ݅ሿݐܿ݅     ൌ  ሾ݅ሿ൧;  for encryption݈ܾ݁ܽݐ݌݅ൣ݌
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ሾ݅ሿሿ݈ܾ݁ܽݐ݌ሾ݅ݐܿ݅     ൌ  ሾ݅ሿ;  for decryption݌
 
with 
 Intermediate ciphertext array (containing permuted plaintext)  : ݐܿ݅    
 Precomputed permutation table. Precomputation is  : ݈ܾ݁ܽݐ݌݅    

performed during key setup 
 Plaintext array  : ݌    
    ݅ :  Index 
 
 is ideally a very big array of 64 bit (or larger) integers, so that e.g. an array sized 65536 entries ݈ܾ݁ܽݐ݌݅
spans 4Mbit (524288 bytes). This simple method has although the decisive disadvantage that a large 
number of tables with different sizes are required to enable for variable block sizes. 
 
Another way to perform the initial permutation is much more flexible. A special binary tree that is created 
during initial key setup pointing to a set of permutation tables in the bottom tree elements is so versatile that 
almost any number of plaintext units can be permuted with minimum computing power. 
 
A plaintext unit may be a byte, a 16 or 32 bit word or a larger ordered collection of bits. One permutation 
table may contain e.g. n=16 entries. For this example a maximum of ݊! ൌ 16! ൌ  20922789888000 different 
tables with 16 entries exist. Only a subset of several hundred or thousand such tables can be created and 
subsequently stored in RAM. The data structure that helps selecting tables and that adds an offset to each 
table is a binary tree as shown below. 
 
The example shows a tree that has a maximum permutation capacity of 128 plaintext units (words). If each 
plaintext unit is e.g. 64 bit in size, a total of 128 כ 64 ൌ 8192 bit can be permuted with only eight 16-word 
tables and a tree depth of ݈݃݋ଶ8 ൌ 3. Execution time of the entire word permutation operation is ܱሺ݊ ·  .ଶ݊ሻ݃݋݈
During key setup, 0-word or 16-word offsets (shown in violet color) and pointers to tables are assigned to the 
bottom tree nodes. Any of the 8 available permutation tables, each containing a valid permutation sequence 
to permute 16 words, can be assigned to any available bottom node. The “father” nodes of the bottom tree 
nodes are assigned 0-word or 32-word offsets and the respective “father” node(s) are assigned the double 
of 0-word or 32-word offsets during key setup: 0-word or 64-word offsets. 
 
In order to permute 128 words, all that needs to be done is to follow the tree for each ݅; 0 ൑ ݅ ൏ 128.  
 
If block length is less than a power of two, e.g. 99 words, then the binary tree is only followed in a way that 
the resulting offset is less than the block length. The final branch in our example is: ൅64 ൅ 32 ൅ 0 ൌ 96 . The 
“final” table, table 1, cannot be used as the mapping would be inconsistent in the end. A smaller and 
consistent permutation table is used in this case. 
 
A binary tree is thus a powerful tool to make a small permutation mapping practical for universal computers 
as target machines. Universal computers are typically equipped with gigabytes of RAM and stack memory, 
which is very practical for handling binary trees. 
 
Ternary or quaternary or any other higher-order trees may be used in lieu of a binary tree. As today’s 
computers operate best with powers of two, any number of “child” nodes that can be divided by two without 
remainder is suitable. 
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Figure 7: Binary permutation tree 
 
 
 
2.3 Partitioning of plaintext into blocks of different size in a keyed operation 
 
In order to deprive opponents of the knowledge about block boundaries, big, as well as small blocks can be 
partitioned into slices of different size. As this operation solely depends on the key and the size of the 
plaintext block, a good implementation of the generator that determines block sizes, forces opponents who 
attempt to attack the cipher by brute force to perform their decryption attempts with lots of different, but 
equally probable block sizes. Opponents using dedicated code-breaking hardware (e.g. an array of wafer-
scale code breakers) need to make available all the resources required for blocks with maximum possible 
size, which can cost enormous amounts of valuable chip space for a hardware code breaker. 
Computation of block sizes can be made extremely computationally expensive, e.g. by employing modular 
exponentiation during key setup: 
Let LK and RK denote the left part and right part of a (nK+mK) – bit string representing key ܭ ൌ • ௄ܮ ܴ௄ . 
We further choose a prime number p in another keyed operation and compute the key ܭ஻ௌ for the keyed 
operation that computes block sizes:  

஻ௌܭ ൌ ௄ܮ
ோ಼݉݌ ݀݋ 

 
An opponent needs to perform this operation every time he tries a new key. The legitimate user of the cipher 
although will perform the operation only once. 
Computation of the key can be rendered much more complicated e.g. by nesting the modular exponentiation 
operation and/or by forming an additive and/or multiplicative secrecy system.  
 
Compared with the128 bit block size of AES Rijndael and 64 bit for DES (Data Encryption Standard) might a 
huge block size look oversized by several orders of magnitude. When encrypting large files or some other 
large amount of data, this concept is although extremely powerful. An opponent has to deal with blocks of 
unknown size and, if polymorphic functions are used in an actual implementation, an unknown cipher on top 
of this. Blocks will be typically so huge that it’s impossible to mount any kind of codebook attack. Even more 

0 

16 words 

………….…………..…. 

+16 

table 0 

7 … 15 3 14 … 10 15 0 … 9 15 11 … 0 5 3 … 1 

table 1 table 2 table 3 table 7 

is i>>4 even ? 
yes no 

+0 +0 

is i>>4 even ?

yes no

+16 +16 

is i>>4 even ? 
yes no 

+0 

+32 

is i>>5 even ? 

yes no 

+0 +0 

yes no

+32 

+64 

yes no

+0 

is i>>5 even ? 

is i>>6 even ? 

16 words 16 words 16 words 16 words 16 words 

32 words 32 words 32 words 32 words 

64 words 64 words 

128 words 
i : plaintext iterator 

128 words: total capacity of sub-tree 
+64 / +0: offset 
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important is the fact that the size of the first piece of a truncated block is unknown. This is particularly 
important when using the cipher in CBC mode (Cipher Block Chaining). Opponents are deprived of the 
knowledge about block boundaries, which even makes exhaustive sieve (Brute Force Attack) much more 
costly. The first block might be 531 bytes, 1 Kbyte, 10 Kbyte, 20 Kbyte or, say, 51395 bytes long. 
 
 
 
2.4 Execution of three unbalanced Luby-Rackoff rounds [5] 
 
In order to speed up encryption/decryption of giant blocks, it is desirable to be able to partition the encryption 
operation. The vast majority of CPUs for PCs sold today are equipped with two, four or even more processor 
cores with dedicated first- and often as well with dedicated second level caches. The required overhead for 
synchronizing a number of threads that run on different processor cores renders parallel encryption 
senseless for small blocks like for AES Rijndael. 
 
In order to assure confusion [1], diffusion [1], as well as completeness [2] and maximization of the avalanche 
effect [3] all at a time, three-round Luby-Rackoff [5] with plaintext-biased round functions is the ideal 
construction. If a cryptographic transformation is complete, then each ciphertext bit must depend on all of 
the plaintext bits. After only two rounds, every bit depends on every other bit in the block. The construction 
further comes with provable security. 
 
All of the three rounds can be partitioned so that they can be executed on different processor cores. Speed 
performance is best if left and right binary strings have different sizes. While the left string of round 2 may 
e.g. only be 256 bit long in practice, the right string may feature a length of several thousand or hundreds of 
thousand bits.  
 
Three-round Luby-Rackoff [5] is an ideal construction to apply Interpreted Polymorphic Encryption as the 
mathematics behind it allows for a great amount of flexibility for the one-way functions used as round 
functions. 
 
 
 
2.4.1 The Extended Luby-Rackoff Construction 
 
Pseudorandom function generators cannot be directly used for block encryption because they are not 
invertible. Luby and Rackoff were however able to show that there is a way to do so. In 1992 Maurer [4] 
provided a simplified explanation, which is cited and generalized in the next paragraph. 
Three-round Luby-Rackoff is a process that comprises a sufficiently high number of operations so that an 
interpreter for a Polymorphic Encryption Algorithm won’t consume an excessive amount of CPU time on the 
interpretation of atomic tokens. Effective linearity according to Dunkelmann and Keller [7] is the same as of 
random permutations, which is an ideal design goal for block ciphers. 
 
Luby and Rackoff [5] showed that a provably secure block cipher can be constructed from just three good 
pseudorandom functions that are used as round functions in a Feistel structure reduced to only three 
rounds. This paragraph contains a generalized version of the mathematical proof, which largely consists of a 
citation of [4]. The following paragraphs will be dedicated to the pseudorandom functions which are used as 
round functions. 
 

Let { }n1,0  denote the set of binary strings of length n, let nF  denote the set of all 
nn nn 22 2)2( =  functions 

{ } { }nn 1,01,0 → , and let nP  denote the subset of functions of nF  that are permutations of { }n1,0 . For 
nFf ∈1  and nFf ∈2 , 21 ff o  denotes the composition of 1f  and 2f  : ))(()( 1221 xffxff =o  . 

 
For two binary strings a  and b , ba •  denotes their concatenation. If a  and b have the same length, 

ba⊕  denotes their bitwise exclusive or combination. 
 
Motivated by the Feistel round structure of the DES cipher, Luby and Rackoff defined a mapping H: 

nnnn PFFF 2→××   assigning every triple of functions in nF  a permutation in nP2 . In other words, three 
functions nF  working with binary strings of length n are combined to create a set of permutation functions 
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H of nP2  that map binary strings of twice the length n.  
 
In our case we define for the mapping H: mnnmn PFFF +→××   assigning the set of functions in nF , 

mF  a (non-invertible) hash function in mnP + . In other words, two functions nF  working with binary strings 
of length n and one function mF  working with binary strings of length m with mn <  are combined to create 
a set of hash functions H of mnP +  that map binary strings of length n+m. Hash functions have the ability to 
compress information, but also to expand information. This is exactly required for the general case of an 
asymmetric Luby-Rackoff construction. 
 

 
Figure 8: Three-round Luby-Rackoff construction 

 
 
Mathematically, this mapping looks as follows: 
 
Let L and R denote the left part and right part of a (n+m) – bit string RL •  and let for mnFf +∈  the 

permutation mnPf +∈  be defined as 

[ ])()( RfLRRLf ⊕•=•  , 
 
i.e., the right part of the argument appears unchanged while the left part of the result equals )(RfL ⊕ . 
This corresponds in principle with one round of DES (Data Encryption Standard), with the difference that left 
and right side are unbalanced and that binary strings n and m with variable length are being processed. 
 
For a list of functions, n

s Ffff ∈...,, 31  and m
s Ffff ∈−142 ...,, , let the permutation function 

{ } { } mnmn
sff ++ → 1,01,0:),...,( 1ψ  be defined by  

121121 ...),...,,( −− = ss ffffff ooψ  , 
 
i.e., ( )( ))...(...))(,...,( 111 RLfffRLff sss •=• −ψ . The mapping H can now be exactly defined by 

),,())(,,( 321321 fffRLfffH ψ=•  (cf. Figure 2), where 
 

( )( )[ ] ( ) ( )( )( )[ ]RfLfRfRfLRfLfRRLfff 123112321 ))(,,( ⊕⊕⊕⊕•⊕⊕=•ψ  . 
 
The decisive question is the security of this construction. Luby and Rackoff broke this problem down to 
calculating the probabilty for being able to distinguish nF 2 , which is mnF +  in our general case, from a 
function randomly chosen from the much smaller set ),,( nmn FFFψ  . An oracle circuit is supposed to do 

Li 

f1 

Ri

f2 

f3 

Si

Ti

Ti Vi
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this job. An oracle circuit mnC +  is a circuit with gates consisting of n+m input and n+m output gates where 

all oracle gates in a circuit evaluate the same fixed function in mnF + . 
 
Let { } { }1,0)1,0(: →+ kmng  be a function taking as input k  n+m bit strings. For a given set of k arguments 

kxxx ,...,, 21  , let 

( ) ( ) ( )( )[ ]),,(:1,...,, 21
nmn

Rk FFFfxfxfxfgP ψ∈=  
 
and 

( ) ( ) ( )( )[ ]mn
Rkg FfxfxfxfgP +

∆

∈== :1,...,, 21  
 
be defined as the probabilities that ( ) ( ) ( )( ) 1,...,, 21 =kxfxfxfg  when f is chosen randomly from 

),,( nmn FFFψ  and from mnF + , respectively.  
 
If the two probabilities are equally likely, their difference is zero. If one of the two probabilities is less or more 
likely than the other, i.e. if the oracle is able to create a link between ),,( nmn FFFf ψ∈  and mnFf +∈ , 
the absolute value of the difference of both probabilities is high. If an upper limit for this difference of 
probabilities exists and this limit is very small, three-round Luby Rackoff would be proven secure. 
 
Lemma 1. For every function { } { }1,0)1,0(: →+ kmng  and for every set of k arguments kxx ,...,1  , 

( ) ( ) ( )( )[ ] )22(
2

),,(:1,...,,
2

21
mn

g
nmn

Rk
kPFFFfxfxfxfgP −− +⋅≤−∈= ψ  . 

 
Proof of Lemma 1. Let 21, ff and 3f be functions randomly chosen from nF , mF , and let 

),,( 321 ffff ψ= . Let iii RLx •=  for ki ≤≤1  be the k arguments of f, and define ii TS ,  and iV  for 

ki ≤≤1  as follows (cf. Figure 2): 
)(1 iii RfLS ⊕=  

 

iii RSfT ⊕= )(2  
 
and  

iii STfV ⊕= )(3 . 
 
Note that when the evaluation of  f  for the argument  xi  is viewed as a three-round process (similar to three 
rounds of DES), the outputs of the first, second and third round are iiii TSSR •• ,  and )( iiii RLfVT •=• , 

respectively. We may for the rest of the proof assume, without loss of generality, that the  xi , ki ≤≤1  , are 
distinct. Choosing identical arguments provides no new information and can thus certainly not help. 
 
Let Sε  and Tε  denote the events that kSS ,...,1  as well as kTT ,...,1  are distinct. Let ε further be the event 

that both Sε  and Tε occur. As a matter of consequence, 22221121 )(,)( RSfTRSfT ⊕=⊕= ,…, 

kkk RSfT ⊕= )(2  are completely random because  f2  is a random function and hence 

)(),...,(),( 22212 kSfSfSf  are completely random. Similarly, if Tε  occurs, then )( 1311 TfSV ⊕= ,…, 
)(3 kkk TfSV ⊕=  are completely random because  f3  is a random function. Thus if both Sε  and Tε occur, 

kkk VTxfVTxf •=•= )(,...,)( 111  are completely random and thus ),,( 321 ffff ψ=  behaves precisely 

like a function chosen randomly from mnF + . 
 
Therefore the distinguishing probability is upper bounded by 
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( ) ( ) ( )( )[ ] [ ]εψ PPFFFfxfxfxfgP g

nmn
Rk −≤−∈= 1),,(:1,...,, 21  . 

 
We now derive an upper bound for [ ] [ ]εε PP =−1 , where ε  denotes the complementary event of ε . ε  is 

the union of the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k

 events { }ji SS =  for kji ≤<≤1  and the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
k

 events { }ji TT =  for kji ≤<≤1 . 

The probability of the union of several events is upper bounded by the sum of the probabilities, and hence 
 

[ ] [ ] [ ] [ ]∑∑
≤<≤≤<≤

=+=≤=−
kji

ji
kji

ji TTPSSPPP
11

1 εε  . 

 
Since  f1  is a random function, and for ji ≠  we have 
 

[ ]
⎩
⎨
⎧

==
−

0
2 n

ji SSP    
if
if

 
ji

ji

RR
RR

=
≠

 

 
which further simplifies to yield  
 

[ ] n
ji SSP −≤= 2  

 
for ji ≠  simply because ji SS ≠  when ji RR =  because  f1  is a random function. 
By a similar argument we obtain 
 

[ ] m
ji TTP −≤= 2  

 
for ji ≠  . 
 
For the upper bound [ ] [ ]εε PP =−1  we finally yield 
 

[ ] [ ] ( )
( ) )22(

2
1)22(

!2!2
!2

2
2

2
1 mnmnmn kk

k
kkk

PP −−−−−− +⋅
−

=+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

=⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤=− εε  

 

⇔      [ ] ( ) )22(
2

11 mnkkP −− +⋅
−

≤− ε  

 
As  ( ) 21 kkk <−  , Lemma 1 follows. 
 
It should be noted that the symmetric case with n=m features optimum attack security. In case with n=m 
the term simplifies to yield 

⇔      [ ] ( ) ( )
n

n kkkkP
2

122
2

11 −
=⋅⋅

−
≤− −ε  

 
Security depends mainly on n as this number of bits is smaller than m. If the left side is only n=64 bits in 
length and the right side is much longer, e.g. m=1024 bits, an attack would certainly be mounted on the left 
side as an attack complexity of 264 is very well manageable these days. 
It is very important to note that it is always possible to divide left and right side into pieces with almost 
identical length! The actual demo C++ code has been programmed exactly this way. A 1397 byte block is 
thus divided into a 704 byte left side and a right side with 693 bytes. Attack security corresponds with the 
one of a 1386 byte (= 6932 ⋅ byte) symmetric three-round Luby-Rackoff cipher and is consequently only a 
little weaker than what would be theoretically possible to yield. 
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As long as the functions 21, ff  and 3f  are pseudorandom functions, the three-round Luby-Rackoff 
construction features proven security. The proof of Lemma 1 works just as well for permutations (that are 
invertible) as for pseudorandom functions that are not invertible. Good stream ciphers, but also hash 
functions and fast block ciphers used in Output Feedback Mode are all suitable and have been successfully 
used in the past to create good Luby-Rackoff block ciphers. 
 
 

2.5 Execution of the first and the third Luby-Rackoff rounds with a short left binary string and a long 
right binary string 
 
In this paper an asymmetric (unbalanced) Luby-Rackoff construction is proposed. It is taken into account 
that this construction is only roughly as secure as a Luby-Rackoff construction with two times the binary 
string length of the shorter binary string used in the configuration that is proposed here. The advantage of 
using asymmetric string lengths lies in the ability to execute rounds 1 and 3 fast by partitioning these 
computationally expensive rounds into a number of independent operations. As the substring Ri is very often 
longer than substring Li , round functions f11, f12, f13, as well as f31, f32 and f33 must process longer binary 
strings than round function f2 before combination with the first data bit using bitwise exclusive or or 
add/subtract or a more complex function can take place.  

 
Figure 9: Three-round Luby-Rackoff construction with partitioned rounds 1 and 3 

 
The figure below shows that combination, as well as computation of the round functions for round 1 and 3 
take place independent of each other. Round functions f11, f12, f13, as well as f31, f32 and f33 all use the 
entire string Ri (Ti respectively) for their computation. 
 
For the demo C++ code, partitioning has not been realized. The 64 bit code although still outperforms 64 bit 
compiled AES by approx. 50%. 

Li Ri

Si

Ti

Ti Vi

f2 

f12 f11 f13 

f32 f31 f33 
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Figure 10: Partitioned Luby-Rackoff round 1 to enable for parallel computation 

 
It is important to reflect that for all functions [ ])()( RfLRRLf ⊕•=•  , the bitwise exclusive or 
combination in 
 

)(1 iii RfLS ⊕=  
 

iii RSfT ⊕= )(2  
 
and  

iii STfV ⊕= )(3 . 
 
can theoretically be divided into as many bitwise operations as the respective string length. It definitely 
makes sense to take advantage of the longest word length that is available on the target machine, which is 
currently 64 bits for PCs and 32 bit for high-end microcontrollers. 
 
Useful round functions are stream ciphers and block ciphers employed in a Davies-Meyer-, Matyas-Meyer-
Oseas- or Miyaguchi-Preneel compression function (hash function) or a block cipher can be used in output 
feedback mode. Fast key setup and fast generation of the confusion sequence are a plus. 
Round functions are discussed in chapter 3.  
 
 
2.6 Execution of a second Luby-Rackoff round with a long left binary string and a short right binary 
string 
 
Useful round functions are again stream ciphers, block ciphers employed in a Davies-Meyer-, Matyas-
Meyer-Oseas- or Miyaguchi-Preneel compression function (hash function) or a block cipher used in output 
feedback mode. As the bias Si for round function f2 is quite short, key setup is easy to perform rapidly. Fast 
generation of the confusion sequence is even more important for the actual implementation of a round 
function f2 .  
Round functions are discussed in chapter 3.  
 
The entire partitioning concept can be implemented as well with long left binary strings for rounds 1 and 3 
and short left binary strings for round 2 respectively. It all depends on the overall speed at which the entire 
construction can be executed and it may be clever to select this mode of operation dynamically by making 
the selection a keyed operation. 
 
 

Li Ri

f12 

Si 

Ti

f11 

f13 

f2 



 17

2.7 Encryption of excess bytes 
 
In order to render the cipher as efficient as possible, 64 bit operations are preferably used. As a matter of 
consequence, the minimum size of an ordered collection of bits is 64 for a 64 bit implementation. In order to 
encrypt 1 .. 7 excess bytes, special treatment of this data is required: 
The best solution is simply to combine excess bytes in round 2. By doing this, even the Strict Avalanche 
Criterion is met. 
 
 
2.8 Encryption of short blocks 
 
Blocks that are too short for encryption using partitioned Luby-Rackoff (less than e.g. 256 bit) require special 
treatment. Although system integrators are strongly discouraged to encrypt single bytes, 64 bit blocks or 128 
bit blocks, the proposed cipher may contain functionality to encrypt such small amounts of data. Blocks 
sized between 128 .. 512 bit are encrypted by a shrinked version of the giant block size cipher proposed in 
this paper. As a whole host of attacks are applicable to ciphers with small S-boxes, it may be wise not to 
implement support for encrypting small blocks. As an example, when encrypting more than 256 8 bit blocks 
with the very same key, an adversary might already have built up a codebook. The only precaution against 
codebook attacks is to force the adversary to build up an incredibly big and expensive codebook that he 
might never be able to fill with data. 128 bit is regarded as being safe today. 
 
 
2.9 Alternative bitwise combination functions 
 
Bitwise exclusive or is the simplest operation suitable for combining data with a confusion sequence. The 
logical operation is invertible. The same confusion sequence and the same logical operation is used for 
encryption as well as for decryption. 
It is although as well possible to take advantage of exclusive or and add/subtract chosen in a keyed 
operation. An add operation used to encrypt a word is inverted by using a subtract operation during 
decryption and vice versa. Exclusive or, add, as well as subtract execute in a single machine instruction 
on probably all modern microprocessors. 
With only one additional machine instruction, 128 equally likely permutations of 64 bit words can be added 
through the use of bitwise left or right rotation (which is NOT to be mistaken for arithmetical shift!). This 
yields 3 · 128 ൌ 384 equally likely combination functions for the combination of 64 bits at a time. 
 
 
3. Round functions: Generation of High-Quality Pseudorandom Bitstreams 
 
The decorrelation module as well as the round functions in a Luby-Rackoff structure require good 
pseudorandom functions, preferably ones that are impossible to analyse. This is where the strength of 
classic polymorphic pseudorandom number generation is found. A polymorphic pseudorandom number 
generator executes conceptually different pseudorandom number generators (PRNG) in an order that is 
defined by the key and by the shared internal state. By initializing the shared internal state with the entire 
key and an initialization vector and by defining the sequence of operations with the key, one can easily 
parameterize this multiplicative/additive combined secrecy system. 
The basis of a polymorphic pseudorandom number generator is typically a set of lightweight PRNGs. It is 
even possible to use cryptographically weak functions like LCG, which is still in use in many systems as 
source for pseudorandom numbers.  
It is possible to create polymorphic PRNG functions that are initialized within a few clock cycles and that 
generate very fast streams of pseudorandom numbers - as required for round function f2. For the other 
round functions, polymorphic PRNG functions are required that can be initialized as quickly as possible with 
a large and variable bit stream and that output a rather small number of pseudorandom numbers. 
 
 
3.1 Dynamically selected Pseudorandom Number Generators 
 
Unknown but cryptographically weak pseudorandom generators can only be identified by looking at their 
output sequence. A real spectacular example is the Linear Congruential Generator 15mod)53(1 +≡+ xxi  . 

For the start value 7≡x  , the output sequence becomes ,...11,2,14,8,11,2,14,8,11,7  . Without knowing the 



 18

recurrence relation  15mod)53(1 +≡+ xxi , it is possible to identify this relation after taking only a few 
samples. 
 
Let [ ]kibib yYP ++ =  be the probability that an oracle can guess output values iY  after recording and 

analysing the last  b  output values; after  k  output values have been recorded, let the oracle be able to 
identify the pseudorandom number generator RNG and to predict all following output values. 
 
For [ ]kibib yYP ++ =  we have: 

[ ]kibib yYP ++ = =
⎩
⎨
⎧

=
0
1

   
if
if

 
kb
kb

<
≥

 

 
Theorem 1. Let Z and Y denote left and right parts of a binary string and let ( )iiYiii YZPRNGYZ •=• ++ 11  
be the recurrence relation of a set of similar but not identical pseudorandom number generators. Before 
executing a pseudorandom number generator, the actual function is selected by the  Y  part of the binary 
string that was output upon the last execution of a (probably different) pseudorandom number generator 
function. As long as a different pseudorandom number generator is selected before the oracle is able to gain 
sufficient knowledge about its identity, 0=bP  .  
 
Proof.  [ ]kibib yYP ++ =  is defined to be 0 if b<k . The oracle is given less than  k  samples of the output 
sequence of one specific pseudorandom number generator function. Thus it is unable to make any 
prediction at all.  
 
 
Another, much more hypothetical assumption for an oracle, may be the ability to predict on average every n- 
th output value of a pseudorandom number generator function, as well as the ability to predict which 
pseudorandom number generator function is used on average for every m- th output value.  
 
Again we have for the recurrence relationship 

( )iiYiii YZPRNGYZ •=• ++ 11  

( )11122 +++++ •=• iiYiii YZPRNGYZ  
… 

( )jijijYijiji YZPRNGYZ +++++++ •=• 11  
 
For the probability of the oracle to be able and guess the first output value [ ]giib yYZP =• ++ 11  , and by 

assuming that the value  YZi •   is known, we yield 

[ ]
n

yYZP giib
1

11 ==• ++  

 
which is identical to the probability to guess each of the parts of the binary output string 

[ ] [ ] [ ]
n

yYPyZPyYZP gibgibgiib
1

1111 ======• ++++  

 
Due to the fact that the oracle needs to predict the actual function as well as the output value, we yield for 
the prediction probability of the oracle after executing the recurrence relationship two times 

[ ]
mn

yYZP giib
11

22 ⋅==• ++  

 
After j executions we yield 

[ ]
1

11
111 −

++++ ⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅==•

j

gjijib mnn
yYZP  
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Even if an oracle as powerful as outlined above was available to an attacker, the sequential execution of a 
Polymorphic Pseudorandom Number Generator can potentially render comparably insecure base functions 
into powerful sources of pseudorandom numbers. It should be noted that if the very same pseudorandom 
number generator function YiPRNG  was used again and again, the probability of the oracle to be able and 

guess output values would remain at n/1  .  
A clever design of a pseudorandom number generator using dynamic base function selection will not only 
take history into account for the selection of base functions, but also keying information and, if available, 
other data. 
 
 
3.2 Compiled Pseudorandom Number Generator stack forming a multiplicative/additive combined 
secrecy system 
 
Very fast Polymorphic Cipher designs so far have always relied on the strength of compiled cryptographic 
base functions. A crypto compiler is used to compile an algorithm directly from a key. Each key thus 
generates one unique cipher or a stack consisting of different pseudorandom number generators (PRNGs). 
Throughout the first part of this chapter it is assumed that a crypto compiler compiles identical Linear 
Congruential Generator (LCG) primitives to form a PRNG stack that operates with an internal state that is 
shared by all compiled PRNGs. Although LCG PRNGs are very rarely implemented in actual Polymorphic 
Ciphers, this weak PRNG is perfectly suited to show plainly the strength of multiplicative/additive PRNGs. 
 
The stacked LCG PRNGs are supposed to pass information from one primitive to the next in the stack. 
 
The linear congruential sequence of a pure multiplicative LCG is determined by (a, Xn and M). 
 

MXaX nn mod)(1 ⋅=+  

MXaX nn mod)( 12 ++ ⋅=  

MXaX nn mod)( 23 ++ ⋅=  
… 

 
As there are three unknowns (a, Xn and M), consequently three consecutive samples are sufficient to break 
this generator. 
 
If used with a randomiser, the task to break a modified LCG primitive in a compiled PRNG can be described 
as 
 

MXnrX nn mod))((1 ⋅=+  ; 
        with r(n) being  a sequence of numbers  
        randomly selected by the crypto compiler 
 
yielding the congruential sequence 
 

MXnrXrXrX nn mod))(...)1()0(( 10 ⋅++⋅+⋅=  
 
The minimum number of samples required to determine all unknowns equals n+2 . The unknows are r(0), 
r(1), .., r(n), X0, M. An opponent gets n samples to try and break the stack but has to deal with n+2 
unknowns. His task cannot end successfully. 
 
LCGs are good examples for base functions that are comparably insecure, but that can be hardened by 
using them in a stack of compiled base functions. Almost any function can be added to such a stack – even 
complete ciphers like DES, Magenta, RC6 or AES. Such base functions are very easy to parameterize: The 
crypto compiler simply assigns a key to such base functions. 
 
Faster and much smaller base functions that can be stacked more often than slow and complex base 
functions include: 
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Add-with-carry generators (ACG):  
 

MXXX rnsnn mod)carry(  ++= −−  
 
These generators have long periods, easily exceeding 10200, and they are even faster than LCGs.  
 
Multiply-with-carry generators (MWCG) use this simple relation: 
 

MXX nn mod)carry(a  1 += −  
 
Multiplier a can be chosen from a large set of integers without affecting the period of around 231-1 for 32 bit 
implementations. MWCGs easily pass standard randomness tests. 
 
Add-with-carry generators can feature a very long period if s and r are large: 
 

MXXX rnsnn mod)carry(  ++= −−  
 
If a sufficiently large number of such primitive PRNGs are concatenated to form one single PRNG, security 
holes of each primitive PRNG are levelled out. Such a combined secrecy system has the unique feature to 
exhibit no static weakness and it overwhelms an opponent with a large number of variables. The number of 
variables is at any time greater than the number of knowns. 
 
A limited number of PRNGs form a polymorphic pseudorandom function )(xf  with the following program-
controlled recurrence relation: 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−

−

−

),,(
...

),,(
),(

1

1

1

carryaXMWCG

rsXACG
aXLCG

X

n

n

n
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if
if
if
if

 

mnSEQPROG

nSEQPROG
nSEQPROG

=
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=

][_
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       with a ,s ,r and carry being numbers selected 
       pseudo-randomly by the crypto compiler and 
       PROG_SEQ[ ] representing a program sequence. 
       There shall exist m conceptually different PRNG 
       base functions 
 
The program sequence PROG_SEQ[ ] can be of almost arbitrary size. Initialization of this sequence is a 
keyed operation that can be performed during setup of the encryption context. The process is preferably part 
of the key expansion step. 
 
The polymorphic pseudorandom function )(xf  is the sum of m PRNGs. This system can be described as 

the sum of operations O  with each iO  being a specific PRNG corresponding to key choice i , which has 

probability ip :  

mmOpOpOpO ++= ...1111  
 
When executing the polymorphic pseudorandom function )(xf  repeatedly, the multiplicative system P  is 
formed:  
 

)0()...1()()( OnOnOnP −=  
 
It should be noted that P is not commutative. After n iterations, one out of nm  different 
multiplicative/additive PRNG systems has been executed.  
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The principle can additionally be employed to create a polymorphic pseudorandom function )(xf  that 
resists power attacks (SPA, DPA). A battery of almost identical PRNGs that compile into almost identical 
machine code is employed. The following assumptions need to be made for almost identical machine code: 
 

- Execution times of interchanged instructions must be identical, which is the case for add, subtract 
and exclusive or operations 

- Power consumption of interchanged instructions must be identical, which is again the case for add, 
subtract and exclusive or operations 

 
 
3.3 Fast Polymorphic PRNG Functions for the generation of large pseudorandom bitstreams with 
short bias bitstreams 
 
For a round function fx it may be important that the internal state can be copied quickly from the initial 
internal state and that it runs at high speed. 
 
One possible configuration is a polymorphic PRNG function with a big key-dependent internal state, a long 
polymorphic sequence and an additional “Immediate” internal state that is only a few words in size and that 
is used by every polymorphic base function to compute pseudorandom numbers. 
 

 
Figure 11: Polymorphic PRNG function with fast bias key setup for round function f1, f2 or f3 
 
 
The proposed polymorphic PRNG executes a sequence of base PRNG functions like ACGs and MWCGs 
that all share the same internal state where all parameters for the base PRNG functions are stored. This 
internal state constantly changes in a pseudorandom way during execution of the sequence of base PRNGs. 
Every base PRNG function requires a number of parameters and history in order to be suitable. A plain LCG 
PRNG does not satisfy this requirement. With a few modifications, i.e. an additional operation that at least 
modifies the Immediate Internal State, even this totally insecure base function would be suitable. 
 
During key setup with a potentially long key, the sequence of operations is determined and the entire 
Internal State is initialized. This first key setup is executed during key setup of the entire cipher. 
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As soon as e.g. round function f2 is invoked, the Immediate Internal State is bitwise exclusive ored with Si 
(which acts as bias). This second key setup step can be executed within only a few machine instructions. 
After the second key setup step is the proposed polymorphic PRNG immediately able to generate high-
quality pseudorandom numbers (if properly designed). 
Prior to the second key setup step it is necessary to reset the Immediate Internal State. 
 
 
3.4 Fast Polymorphic Hash Functions for the generation of short pseudorandom bitstreams from 
long bias bitstreams 
 
For the round functions f1x and f3x , strings Ri and Ti need to be compressed. The result of this operation is 
then bitwise exclusive ored with Li and Si . 
The requirements for these round functions differ greatly from those for round function f2 . 
 
In this case the operating principle of a hash function satisfies the requirements in the best way. 
 

 
Figure 12: Hash function based on a three-round Luby-Rackoff construction in a CBC-MAC configuration 
 
 
Although execution time of this keyed operation is ܱሺ݊ሻ, three entire Luby-Rackoff rounds need to be 
executed per 128 bit word. It is desirable to take advantage of 64 bit instructions so that cipher C outputs 
128 bits at a time. With three round functions f11, f12, f13, as well as f31, f32 and f33 running in parallel in 
different threads, 384 signature bits can be computed in parallel at a time. Provisions need although to be 
taken that the round functions f11, f12, f13 (and f31, f32, f33 respectively) can as well be executed in the 
context of one or two threads only. It only makes sense to compute round functions in parallel if processing 
time is saved. As synchronization time is inevitably spent, parallel execution only makes sense if there’s a 
benefit. This is the case for big blocks that are encrypted in a single piece. 
 
 
4. Conclusion 
 
The proposed Polymorphic Giant Block Cipher is a groundbreaking solution for the encryption of typical IP 
data packets as well as files. While popular block ciphers that are heavily promoted by Secret Services 
feature tiny block sizes compared with the size of today’s user data packets and thus don’t exhibit much 
avalanche, does the proposed new class of Polymorphic Encryption Algorithms break the block size 
confinement of conventional block ciphers while satisfying the Strict Avalanche Criterion in an 
unprecedented way for a wide range of block sizes without changing the original plaintext size. This new 
method is perfectly suited to encrypt blocks with variable sizes like TCP/UDP data packets. There is no need 
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to pad remaining plaintext bytes with useless information. The Polymorphic Giant Block Cipher thus solves 
the issues that are associated with large block sizes. 
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